$\underline{Thm}$ Let $V,W$ be finite dimensional vector space over $\mathbb{F}$ with ordered basis $\beta,\gamma$, respectively. Let $T,U \colon V \rightarrow W$ be linear & $a \in \mathbb{F}$. Then $$[T+U]_{\beta}^{\gamma}=[T]_{\beta}^{\gamma}+[U]_{\beta}^{\gamma},$$ $$[aT]_{\beta}^{\gamma}=a[T]_{\beta}^{\gamma}.$$ That is, the map $\mathcal{J} \colon \mathcal{L}(V,W) \rightarrow M_{m \times n..