$\underline{Thm}$ (Dimension Theorem)
Let $T \colon V \rightarrow W$ be linear. If $dim(V) < \infty$, then $dim(V)=nullity(T)+rank(T)$.
$\underline{Proof}$
Since $N(T)$ is a subspace of $V$, $N(T)$ is finite-dimensional & $dim(N(T))=nullity(T)=k \leq n$.
If $k=n$, then $N(T)=V$, and so $R(T)=\{0\}$; thus $dim(V)=n=n+0=nullity(T)+rank(T)$.
Suppose $k<n$. Let $\beta{'}=\{ v_{1},\cdots,c_{n} \}$ be a basis for $N(T)$.
Since $\beta^{'}$ is linear independent, we can chose $v_{k+1},\cdots,c_{n} \in V \backslash N(T)$ so that $\beta \{ v_{1}, \cdots,v_{n} \}$ is a basis for $V$.
Note $R(T)=span(\{T(v_{1}),\cdots,T(v_{n}) \})=span(\{T(v_{k+1}),\cdots,T(v_{n})\})=span(S)$.
It remains to show that $S$ is linear independent.
Suppose $\displaystyle b_{k+1},\cdots,b_{n} \in \mathbb{F}\,\&\sum_{i=k+1}^{n} b_{i}v_{i}=0$.
By the linearity of $T$, we have $\displaystyle T(\sum_{i=k+1}^{n} b_{i}v_{i})=0$, and so $\displaystyle \sum_{i=k+1}^{n} b_{i}v_{i} \in N(T)$.
So, $\exists \! c_{1},\cdots,c_{k} \in \mathbb{F}$ such that $\displaystyle \sum_{i=k+1}^{n} b_{i}v_{i}=\sum_{i=1}^{k} c_{i}v_{i}$.
That is, $(-c_{1})v_{1}+\cdots+(-c_{k})v_{k}+b_{k+1}v_{k+1}+\cdots+b_{n}v_{n}=0$.
Thus, $S$ is linear independent. We now concolude that $rank(T)=n-k$; that is $dim(V)=n=nullity(T)+rank(T)$.
'수학 > 선형대수학' 카테고리의 다른 글
[선형대수학] 선형 변환이 일대일인 것과 동치 명제들 (0) | 2020.08.21 |
---|---|
[선형대수학] 선형 변환이 일대일이면 영공간이 0만 원소로 갖는 것과 동치다. (0) | 2020.08.21 |
[선형대수학] 영공간, 치역, 널리티, 랭크 (Null space, Range, Nullity, Rank) (0) | 2020.08.20 |
[선형대수학] 선형 변환 (Linear Transformation) (0) | 2020.08.19 |
[선형대수학] 선형 독립인 부분집합이 있을 때, 항상 이를 포함하는 극대 선형 독립 부분집합이 있다. (Existence of Maximal Linear Independent Subset) 모든 벡터공간은 기저를 갖는다. (0) | 2020.08.19 |