$\underline{Thm}$
Let $V,W$ be finite dimensional vector space over $\mathbb{F}$ with ordered basis $\beta,\gamma$, respectively.
Let $T,U \colon V \rightarrow W$ be linear & $a \in \mathbb{F}$.
Then
$$[T+U]_{\beta}^{\gamma}=[T]_{\beta}^{\gamma}+[U]_{\beta}^{\gamma},$$
$$[aT]_{\beta}^{\gamma}=a[T]_{\beta}^{\gamma}.$$
That is, the map $\mathcal{J} \colon \mathcal{L}(V,W) \rightarrow M_{m \times n}(\mathbb{F})$ with $n=\vert \beta \vert$, $m=\vert \gamma \vert$ is linear. $(T \mapsto \mathcal{J}(T)=[T]_{\beta}^{\gamma})$
$\underline{Proof}$
Let $\beta= \{v_{1}, \cdots, v_{n} \}, \gamma=\{ w_{1}, \cdots, w_{m} \}$.
Then
$$\displaystyle \exists ! a_{ij},b_{ij} \in \mathbb{F} \,s.t.\, T(v_{j})=\sum_{i=1}^{n} a_{ij}w_{i}, U(v_{j})=\sum_{i=1}^{m} b_{ij}w_{i},\, for\, 1 \leq i \leq m,\, 1 \leq j \leq n$$
So
$$\displaystyle (T+U)(v_{j})=\sum_{i=1}^{m} (a_{ij}+b_{ij})w_{i}$$
$$\displaystyle (aT)(v_{j})=\sum_{i=1}^{m} (a a_{ij})w_{i}\, for \, 1 \leq j \leq n$$
Thus,
$$[T+U]_{\beta}^{\gamma}=(a_{ij}+b_{ij})=(a_{ij})+(b_{ij})=[T]_{\beta}^{\gamma}+[U]_{\beta}^{\gamma},$$
$$[aT]_{\beta}^{\gamma}=(a a_{ij})=a(a_{ij})=a[T]_{\beta}^{\gamma}$$
$\underline{Ex}$
$$T, U \colon \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$$
$$T(a_{1}, a_{2})=(a_{1}+3a_{2},0,2a_{1}-4a_{2}),\, U(a_{1}, a_{2})=(a_{1}-a_{2},2a_{1},3a_{1}+2a_{2})$$
$$\beta=\{ e_{1}, e_{2} \}, \gamma=\{ e_{1}, e_{2}, e_{3} \}$$
$$(T+U)(a_{1},a_{2})=(2a_{1}+2a_{2},2a_{1},5a_{1}-2a_{2})$$
$$[T]_{\beta}^{\gamma}=\begin{bmatrix} 1 & 3 \\ 0 & 0 \\ 2 & -4 \end{bmatrix}, [U]=_{\beta}^{\gamma}=\begin{bmatrix} 1 & -1 \\ 2 & 0 \\ 3 & 2 \end{bmatrix},[T+U]_{\beta}^{\gamma}=\begin{bmatrix} 2 & 2 \\ 2 & 0 \\ 5 & -2 \end{bmatrix}$$
'수학 > 선형대수학' 카테고리의 다른 글
[선형대수학] 행렬 연산의 성질 (Properties of Matrix Operation) (0) | 2020.08.26 |
---|---|
[선형대수학] 선형 사상의 합성과 행렬 곱셈 (Compostion of Linear Maps & Matrix Multiplication) (0) | 2020.08.25 |
[선형대수학] 벡터 공간 간의 사상을 모은 집합은 벡터 공간이 된다. (0) | 2020.08.24 |
[선형대수학] 선형 변환의 행렬 표현 (Matrix Representation of a Linear Transform) (0) | 2020.08.21 |
[선형대수학] 좌표 벡터 (Coordinate Vector) (0) | 2020.08.21 |