$\underline{Thm}$ (By the axiom of choice) Let $S$ be a linear independent subset of a vector space $V$. Then there exists a maximal linear independent subset $\beta$ of $V$ with $S \subset \beta$. $\underline{Proof}$ Let $\mathcal{F}$ be the set of all linear independent subsets of $V$ containing $S$. Let $\mathcal{C} \subset \mathcal{F}$ be any chain. Define $\displaystyle L_{\mathcal{C}}$ = $..