반응형

분류 전체보기 272

[선형대수학] 선형 독립인 부분집합이 있을 때, 항상 이를 포함하는 극대 선형 독립 부분집합이 있다. (Existence of Maximal Linear Independent Subset) 모든 벡터공간은 기저를 갖는다.

$\underline{Thm}$ (By the axiom of choice) Let $S$ be a linear independent subset of a vector space $V$. Then there exists a maximal linear independent subset $\beta$ of $V$ with $S \subset \beta$. $\underline{Proof}$ Let $\mathcal{F}$ be the set of all linear independent subsets of $V$ containing $S$. Let $\mathcal{C} \subset \mathcal{F}$ be any chain. Define $\displaystyle L_{\mathcal{C}}$ = $..

[선형대수학] 극대 선형 독립 (Maximal Linearly Independent)

$\underline{Def}$ Let $S$ be a subset of a vector space $V$. A subset $B$ of $S$ is a maximal linearly independent subset of $S$ if $(a)$ $B$ is linear independent. $(b)$ if $A$ is a linear independent subset of $S% with $B \subset A$, then $A=B$. $\underline{Rmk}$ We can re-write this definition as follows: Let $\mathcal{F}$ be the set of all linear independent subsets of $S$. A maximal linear ..

[선형대수학] 극대 부분 집합, 체인, 조른의 보조정리, 선택공리 (Maximal Subset, Chain, Zorn's Lemma, Axiom of Choice)

$\underline{Def}$ (극대 부분 집합) Let $\mathcal{F}$ be a set of sets. A set $M \in \mathcal{F}$ is called maximal if $ \nexists K \in \mathcal{F}$ such that $M \subsetneq K$; that is, $A \in \mathcal{F}$ & $M \subset A \Rightarrow A=M$. $\underline{Def}$ A set $\mathcal{C}$ of sets is called chain if $\forall A, B \in \mathcal{C},\; A \subset B$ or $B \subset A$. $\underline{Maximal\;Principle}$ (Zor..

[선형대수학] 부분공간의 차원 (Dimension of Subspace)

$\underline{Thm}$ Let $W$ be a subspace of a finite-dimensional vector space $V$. Then $W$ is finite-dimensional, and $dim(W) \leq dim(V)$. Furthermore, if $dim(W)=dim(V)$, then $W=V$. $\underline{Proof}$ Write $dim\,V=n \in \mathbb{N}_{0}$. If $W=\{ 0 \}$, then $W$ is finite-dimensional & $dim\,W=0 \leq$. Now, assume $W \neq \{0 \}$. Then $V \neq \{ 0 \}$ & $n \geq 1$. We can choose non-zero $x..

[선형대수학] 선형 종속, 독립의 성질 (Property of Linear Dependence, Independence)

$\underline{Thm}$ Let $V$ be a vector space and let $S_{1} \subset S_{2} \subset V$. If $S_{1}$ is linear dependent, then so is $S_{2}$. If $S_{2}$ is linear independent, then so is $S_{1}$. $\underline{Rmk}$ Let $S \subset V$, where $V$ is a vector space. Consider the space $span(S)$. When is there a proper subset $S' \subsetneq S$ such than $span(S')=span(S)$. First, suppose $\exists S' \subse..

[선형대수학] 선형 종속 & 독립 (Linear dependence & independence)

$\underline{Def}$ $(Linear\;Dependence \; \& \;Independence)$ A subset $S$ of a vector space $V$ is linear dependent if there are finitely many distince $u_{1}, \cdots, u_{n} \in S$ and scalars $a_{1}, \cdots, a_{n}$, not all zero, such that $a_{1}u_{1}+ \cdots + a_{n}u_{n}=0$. A subset $S$ of a vector space $V$ is linear independent if it is not linear dependent. $\underline{Facts}$ $(1)$ $\phi..

반응형