$\underline{Lemma}$ Let $T \colon V \rightarrow W$ be linear & invertible. Then $dim(V) < \infty \Leftrightarrow dim(W) < \infty.$ In this case, $dim(V)=dim(W).$ $\underline{Proof}$ $(\Rightarrow)$ Let $\beta= \{ x_{1}, \cdots, x_{n} \}$ be a basis for $V$. By thm, $T(\beta)$ spans $R(T)=W$. By thm, $dim(W) < \infty$. $(\Leftarrow)$ Since $T^{-1} \colon W \rightarrow V$ is linear & invertible, i..