$\underline{Thm}$
Let $V,W$ be finite-dimensional vector space of equal dimension. Let $T \colon V \rightarrow W$ be linear. Then TFAE:
$(a)$ $T$ is 1-1.
$(b)$ $T$ is onto.
$(c)$ $rank(T)=dim(V)$
$\underline{Proof}$
Write $n=dim(V)=dim(W)$.
$(a) \Rightarrow (b)$
Since $T$ is 1-1, by thm, $nullity(T)=0$.
By Dimension Theorem, $n=dim(V)=nullity(T)+rank(T)=0+rank(T)$,and so $dim(R(T))=n$.
Thus, $R(T)=W$.
$(b) \Rightarrow (c)$
Since $T$ is onto, that is, $R(T)=W$, we gave $rank(T)=n=dim(V)$.
$(c) \Rightarrow (a)$
By Dimension Theorem, we have $nullity(T)=0$. By thm, $T$ is 1-1.
$\underline{Ex}$
Let $\mathbb{F}^{2} \rightarrow \mathbb{F}^{2}$ be the lindear map by $T(a_{1},a_{2})=(a_{1}+a_{2},a_{1})$.
If $(a_{1},a_{2}) \in N(T)$, then $a_{1}=a_{2}=0$, that is, $(a_{1},a_{2})=0$.
So, $N(T)= \{ 0 \}$. By thm, $T$ is 1-1. So, by above thm, $T$ is also onto.
'수학 > 선형대수학' 카테고리의 다른 글
[선형대수학] 좌표 벡터 (Coordinate Vector) (0) | 2020.08.21 |
---|---|
[선형대수학] 순서 기저 (Ordered Basis) (0) | 2020.08.21 |
[선형대수학] 선형 변환이 일대일이면 영공간이 0만 원소로 갖는 것과 동치다. (0) | 2020.08.21 |
[선형대수학] 차원 정리 (Dimension Theorem) (0) | 2020.08.20 |
[선형대수학] 영공간, 치역, 널리티, 랭크 (Null space, Range, Nullity, Rank) (0) | 2020.08.20 |