Loading [MathJax]/jax/output/CommonHTML/jax.js

수학/선형대수학

[선형대수학] 선형 변환의 행렬 표현 (Matrix Representation of a Linear Transform)

xeskin 2020. 8. 21. 16:55
반응형

Def_

Let V,W be finite-dimensional vector spaces with ordered basis β={v1,,vn},γ={w1,,wm}, respectively.

Let T:VW be linear. For each vj(1jn), since T(vj)W, !a1j,,amjF such that T(vj)=mi=1aijwi.

We write [T]γβ=(aij)m×nMm×n(F), called the matrix representation of T by β & γ.

In the case that V=W & β=γ, we write [T]β for [T]ββ.

 

Rmk_

[T]γβ=[[T(v1)]γ[T(vn)]γ] where [T(vi)]γ is column vector.

If U:VW is also linear & [U]γβ=[T]γβ, then U(vj)=T(vj)(1jn), and so U=T by thm.

 

Ex_

T:R2R3 linear.

T(a1,a2)=(a1+3a2,0,2a14a2)

β={e1,e2},γ={e1,e2,e3}: standard ordered basis for R2,R3, respectively.

T(e1)=T(1,0)=(1,0,2)=1e1+0e2+2e3

T(e2)=T(0,1)=(3,0,4)=3e1+0e24e3

So, [T]γβ=[130024]

 

β={e2,e1},γ={e3,e2,e1}

Then [T]γβ=[240013],[T]γβ=[310042],[T]γβ=[420031]

 

반응형