$\underline{Def}$
A vector space $V$ over $\mathbb{F}$ is called finite-dimensional if it has a finite basis $\beta$. In this case, $\vert \beta \vert$ is called the dimension of $V$ and denoted by $dim\,V=dim_{\mathbb{F}}\,V=\vert \beta \vert$.
A vector space $V$ that is not finite-dimensional is called infinite-dimensional. In this casem we write $dim\,V=\infty$.
$\underline{Ex}$
$(1)$ $\mathbb{C}$ is a vector space over itself with a basis $\{ 1 \}$. So, $dim_{\mathbb{C}}\,\mathbb{C}=1$.
$(2)$ $\mathbb{C}$ is a vector space over $\mathbb{R}$ with a basis $\{ 1, i \}$. So, $dim_{\mathbb{R}}\,\mathbb{C}=2$.
$(3)$ $\mathbb{C}^{n}$ is a vector space over $\mathbb{C}$ with a baisis $\{ e_{1}, \cdots, e_{n} \}$; hence, $dim_{\mathbb{C}}\,\mathbb{C}^{n}=n$.
$(4)$ $\mathbb{C}^{n}$ is a vector space over $\mathbb{R}$ with a basis $\{e_{1}, \cdots, e_{n}, ie_{1}, \cdots, ie_{n} \}$; so $dim_{\mathbb{R}}\,\mathbb{C}^{n}=2n$
$\underline{Coro}$ (기저 대체 정리의 따름 정리)
Let $V$ be a vector space with dimension $n \in \mathbb{N}_{0}$.
$(a)$ Let $\beta \subset V$. Then $\beta$ is a basis for $V$. $\cdots (1)$
$\Leftrightarrow \; \beta$ is linear independent & $\vert \beta \vert=n \cdots (2)$
$\Leftrightarrow \; span(\beta)=V$ & $\vert \beta \vert = n \cdots (3)$
$(b)$ Let $\gamma \subset V$ be such that $span(\gamma)=V$. Then $\vert \gamma \vert \geq n$.
$(c)$ If $\omega \subset V$ is linear independent, then there is a basis $\beta$ for $V$ with $\gamma \subset \beta$, so that $\vert \gamma \vert \leq \vert \beta \vert = n$.
$\underline{Proof}$
By assumption, $\exists$ a basis $B$ for $V$ with $\vert B \vert=n$.
$(b)$
If $\vert \gamma \vert = \infty$, there is nothing to show.
So, assume $\vert \gamma \vert \in \mathbb{N}_{0}$. Since $span(\gamma)=V$ and $B$ is linear independent, by RT, $\vert \gamma \vert \geq \vert b \vert =n$.
$(a)$
$(1) \Rightarrow (2)$
Assume $(1)$. Then $\beta$ is linear independent. Also by Coro, $\vert \beta \vert =n$.
$(2) \Rightarrow (3)$
Assume $(2)$. Since $span(\beta)=V$, using the RT, we see that $span(\beta)=V$.
$(3) \Rightarrow (1)$
Assume $(3)$. We have to show that $\beta=\{u_{1},\cdots,u_{n} \}$ is linear independent. Suppose not; then after re-labaeling if necessary, $u_{1}=a_{2}u_{2}+\cdots+a_{n}u_{n}$ for some $a_{2}, \cdots, a_{n} \in \mathbb{F}$.
This implies $span(\beta)=span(\{ u_{2}, \cdots, u_{n} \})$. Since $B$ is linear independent with $\vert B \vert=n$, by the RT, $n=\vert B \vert \geq n-1$, a contradiction. Therefore, $\beta$ is linear independent.
$(c)$
Since $\omega$ is linear independent & $span(B)=V$, by the RT, $\vert \omega \vert \leq n$, and $\exists G \subset B$ with $\vert G \vert = n-\vert \omega \vert$ such that $span(\omega \cup G)=V$.
Put $\beta=\omega \cup G$. Note $\vert \beta \vert \leq \vert \omega \vert + \vert G \vert =n$.
By $(b)$, $n \leq \vert \beta \vert$; thus $\vert \beta \vert =n$. Since $\vert \beta \vert = n$ & $span(\beta)=V$, it follows from $(a)$ that $\beta$ is a basis for $V$ with $\omega \subset \beta$.
'수학 > 선형대수학' 카테고리의 다른 글
[선형대수학] 극대 부분 집합, 체인, 조른의 보조정리, 선택공리 (Maximal Subset, Chain, Zorn's Lemma, Axiom of Choice) (0) | 2020.08.19 |
---|---|
[선형대수학] 부분공간의 차원 (Dimension of Subspace) (0) | 2020.08.18 |
[선형대수학] 기저 대체 정리 (Replacement Theorem) (1) | 2020.08.18 |
[선형대수학] 기저 (Basis) (0) | 2020.08.18 |
[선형대수학] 선형 종속, 독립의 성질 (Property of Linear Dependence, Independence) (0) | 2020.08.17 |