Processing math: 15%

수학/선형대수학

[선형대수학] 극대 부분 집합, 체인, 조른의 보조정리, 선택공리 (Maximal Subset, Chain, Zorn's Lemma, Axiom of Choice)

xeskin 2020. 8. 19. 15:05
반응형

Def_ (극대 부분 집합)

Let F be a set of sets. A set MF is called maximal if KF such that M; that is, A \in \mathcal{F} & M \subset A \Rightarrow A=M.

 

\underline{Def}

A set \mathcal{C} of sets is called chain if \forall A, B \in \mathcal{C},\; A \subset B or B \subset A.

 

\underline{Maximal\;Principle} (Zorn's lemma)

Let \mathcal{F} be a set of set. If for each chain \mathcal{C} \subset \mathcal{F},\, \exists L_{\mathcal{C}} \in \mathcal{F} such that A \subset L_{\mathcal{C}}\, \forall A \in \mathcal{C}, then \mathcal{F} contains at least one maximal set M.

 

\underline{Def}

Let \mathcal{F} be a set of non-empty sets.

A function \displaystyle f \colon \mathcal{F} \rightarrow \underset{A \in \mathcal{F}}{\cup} such that f(A) \in A\; \forall A \in \mathcal{F} is called a choice function of \mathcal{F}

 

\underline{Axiom\;of\;choic} (선택 공리)

For any set \mathcal{F} of non-empyt sets, there exists a choice function f on \mathcal{F}.

반응형