$\underline{Def}$ $(Span)$
Let $S$ be a non-empty subset of a vector space $V$. The span of $S$, denoted by $span(S)$, is the set of all linear combination of vectors in $S$. We also define $span(\phi)={0}$
$\underline{Thm}$
Let $S$ be any subset of a vector space $V$. Then $span(S)$ is a subspace of $V$. Moreover, $span(S)$ is the smallest subspace of $V$ containing $S$. That is, $span(S)=\cap W$ where $W$ is a subspace of $V$ with $S \subset W$.
$\underline{Proof}$
If $S=\phi$, then by definition, $span(S)={0}$ is the zero vector space.
Assume $S \neq \phi$. Choose any $z \in S$. Then $0=0 \times z \in span(S)$. Let $x,y \in span(S),\; c \in \mathbb{F}$.
Then $x=a_{1}u_{1}+ \cdots +a_{m}u_{m},\; y=b_{1}v_{1}+ \cdots + b_{n}v_{n}$ for some $u_{1}, \cdots, u_{m}, v_{1}, \cdots ,v_{n} \in S$ and some $a_{1}, \cdots , a_{m}, b_{1}, \cdots ,b_{n} \in \mathbb{F}$.
So, $cx+y=(ca_{1})y_{1}+ \cdots + (ca_{m}u_{m}+b_{1}v_{1}+ \cdots b_{n}v_{n} \in span(S)$. Thus, $span(S)$ is a subspace of $V$.
Next, let $W$ be any subspace of $V$ containing $S$. Then, $a_{1}u_{1}+ \cdots + a_{n}u_{n} \in W,$ $\forall n \in \mathbb{N},$ $\forall a_{1}, \cdots, a_{n} \in \mathbb{F},$ $\forall u_{1}, \cdots, u_{n} \in S$.
Hence, $span(S) \subset W$.
$\underline{Def}$
A subset $S$ of a vector space $V$ spans $V$ if $span(S)=V$. In this case, we also say that the vectors in $S$ span $V$.
'수학 > 선형대수학' 카테고리의 다른 글
[선형대수학] 선형 종속, 독립의 성질 (Property of Linear Dependence, Independence) (0) | 2020.08.17 |
---|---|
[선형대수학] 선형 종속 & 독립 (Linear dependence & independence) (0) | 2020.08.17 |
[선형대수학] 전치행렬, 대칭행렬 (Transpose, Symmetric Matrix) (0) | 2020.08.17 |
[선형대수학] 부분 공간 (Subspace) (0) | 2020.08.17 |
[선형대수학] 소거 법칙 (Cancellation Law) (0) | 2020.08.17 |