$\underline{Thm}$
Let $V$ be a vector space and let $S_{1} \subset S_{2} \subset V$.
If $S_{1}$ is linear dependent, then so is $S_{2}$.
If $S_{2}$ is linear independent, then so is $S_{1}$.
$\underline{Rmk}$
Let $S \subset V$, where $V$ is a vector space. Consider the space $span(S)$.
When is there a proper subset $S' \subsetneq S$ such than $span(S')=span(S)$.
First, suppose $\exists S' \subsetneq$ with $span(S')=span(S)$.
Then $\exists u_{0} \in S \backslash S' \subset S \subset span(S) = span(S')$.
So, $\exists$ finitely many distinct $u_{1}, \cdots, u_{n} \in S'$ and $\exists a_{1}, \cdots, a_{n} \in \mathbb{F}$ such that $u_{0}=a_{1}u_{1}+ \cdots + a_{n}u_{n}$ or $(-1)u_{0}+a_{1}u_{1}+ \cdots +a_{n}u_{n}=0$ where $u_{0}, u_{1}, \cdots, u_{n}$ are distinct, since $u_{0} \notin S'$.
Thus, $S$ is linear dependent.
Conversely, suppose $S$ is linear dependent.
If $0 \in S$, note that $span(S')=span(S)$, where $S' = S \backslash \{ 0 \} \subsetneq S$.
Assume $0 \notin S$.
There are finitely many distinct $u_{1}, \cdots, u_{n} \in S$ and $a_{1}, \cdots, a_{n} \in \mathbb{F}$, not all zeros, such that $a_{1}u_{1}+ \cdots +a_{n}u_{n}=0$.
If$n=1$, then $a_{1}u_{1}=0$ and $a_{1} \neq 0$, and so $u_{1}=0 \in S$, a contradictaion.
So, $u_{1}=(-a_{2}a_{1}^{-1})u_{2}+ \cdots + (-a_{n}a_{1}^{-1})u_{n}$
Put, $S' = S \backslash \{ u_{1} \}$. Then $span(S')=span(S)$
So, we have proved the following
$\underline{Thm}$
Let $S$ be a subset of a vector space $V$. Then $S$ is linear dependent iff $\exists S' \subsetneq S$ such that $span(S')=span(S)$.
$\underline{Thm}$
Let $S$ be a linear independent subset of a vector space $V$. Let $v \in V \backslash S$.
Then $S \cup \{ v \}$ is linear dependent iff $v \in span(S)$.
$\underline{Proof}$
If $S \cup \{ v \}$ is linear dependent, then by above thm, $\exists S' \subsetneq S \cup \{ v \}$ such that $span(S')=span(S \cup \{ v \})$.
If $S' \subsetneq S$, then $S$ is linear dependent by above thm, a contradiction. So, $S \subset S'$. Since $S' \subsetneq S \cup \{ v \}$, we have $S'=S$. Thus, $v \in span(S \cup \{ v \})=span(S')=span(S)$.
$\underline{Coro}$
Let $S$ be a subset of a vector space $V$.
Then $S$ is linear independent iff $\nexists S' \subsetneq S$ such that $span(S')=span(S)$; that is, $\forall S' \subsetneq S, span(S') \subsetneq span(S)$.
$\underline{Rmk}$
Let $S$ be a subset of a vector space $V$ with $V=span(S)$.
Then $S$ is linear independent iff $\nexists S' \subsetneq$ such that $span(S')=V$.
'수학 > 선형대수학' 카테고리의 다른 글
[선형대수학] 기저 대체 정리 (Replacement Theorem) (1) | 2020.08.18 |
---|---|
[선형대수학] 기저 (Basis) (0) | 2020.08.18 |
[선형대수학] 선형 종속 & 독립 (Linear dependence & independence) (0) | 2020.08.17 |
[선형대수학] 스팬 (Span) (0) | 2020.08.17 |
[선형대수학] 전치행렬, 대칭행렬 (Transpose, Symmetric Matrix) (0) | 2020.08.17 |