$\underline{Def}$ $(Linear\;Dependence \; \& \;Independence)$
A subset $S$ of a vector space $V$ is linear dependent if there are finitely many distince $u_{1}, \cdots, u_{n} \in S$ and scalars $a_{1}, \cdots, a_{n}$, not all zero, such that $a_{1}u_{1}+ \cdots + a_{n}u_{n}=0$.
A subset $S$ of a vector space $V$ is linear independent if it is not linear dependent.
$\underline{Facts}$
$(1)$ $\phi$ is linear independent.
$(2)$ Any subset of $S$ of $V$ containing $0$ is linear dependent, since $1 \times 0 = 0$.
$(3)$ Any subset $S$ of $V$ consisting of a single non-zero vector is linear independent.
$\underline{Prop}$
Let $S$ be a subset of a vector space $V$. Then $S$ is linear independent iff $n \in \mathbb{N}, u_{1}, \cdots, u_{n} \in S, a_{1}, \cdots, a_{n} \in \mathbb{F}$ and $a_{1}u_{1}+ \cdots +a_{n}u_{n}=0$.
$\Rightarrow a_{1}= \cdots =a_{n}=0$.
$\underline{Def}$
We say that finitely many distinct vectors $u_{1}, \cdots, u_{n}$ in a vector space $V$ are linear dependent if the set $u_{1}, \cdots, u_{n}$ is linear dependent.
$\underline{Note}$
A finite subset ${u_{1}, \cdots, u_{n}}$ of a vector space $V$ is linear dependent iff $\exists a_{1}, \cdots, a_{n} \in \mathbb{F}$, not all zero, such that $a_{1}u_{1}+ \cdots a_{n}u_{n}=0$.
'수학 > 선형대수학' 카테고리의 다른 글
[선형대수학] 기저 (Basis) (0) | 2020.08.18 |
---|---|
[선형대수학] 선형 종속, 독립의 성질 (Property of Linear Dependence, Independence) (0) | 2020.08.17 |
[선형대수학] 스팬 (Span) (0) | 2020.08.17 |
[선형대수학] 전치행렬, 대칭행렬 (Transpose, Symmetric Matrix) (0) | 2020.08.17 |
[선형대수학] 부분 공간 (Subspace) (0) | 2020.08.17 |