$\underline{Thm}$ (Replacement Theorem) Let $G, L$ be subset of a vector space $V$ such that $\vert G \vert =n \in \mathbb{N}_{0}, span(G)=V, \vert L \vert =m \in \mathbb{N}_{0}$ and $L$ is linear independent, where $\mathbb{N}_{0}=\mathbb{N} \cup \{ 0 \}$. Then $n \geq m$, and $\exists H \subset G$ with $\vert H \vert=n-m$ such that $span(H \cup L) =V$. $\underline{Proof}$ We prove by induction..