$\underline{Def}$ (Left Product Map) Let $A \in M_{m \times n}(\mathbb{F})$. We define a map $L_{A} \colon \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ by $$L_{A}(x)=Ax \;\; \forall a \in \mathbb{F}^{n},$$ called the left-product map by $A$. $\underline{Ex}$ $$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \in M_{2 \times 3}(\mathbb{R})$$ $$L_{A} \colon \mathbb{R}^{3} \rightarrow \mathbb..