$\underline{Thm}$ Let $V,W$ be finite-dimensional vector space of equal dimension. Let $T \colon V \rightarrow W$ be linear. Then TFAE: $(a)$ $T$ is 1-1. $(b)$ $T$ is onto. $(c)$ $rank(T)=dim(V)$ $\underline{Proof}$ Write $n=dim(V)=dim(W)$. $(a) \Rightarrow (b)$ Since $T$ is 1-1, by thm, $nullity(T)=0$. By Dimension Theorem, $n=dim(V)=nullity(T)+rank(T)=0+rank(T)$,and so $dim(R(T))=n$. Thus, $R(..