$\underline{Thm}$ Let $W$ be a subspace of a finite-dimensional vector space $V$. Then $W$ is finite-dimensional, and $dim(W) \leq dim(V)$. Furthermore, if $dim(W)=dim(V)$, then $W=V$. $\underline{Proof}$ Write $dim\,V=n \in \mathbb{N}_{0}$. If $W=\{ 0 \}$, then $W$ is finite-dimensional & $dim\,W=0 \leq$. Now, assume $W \neq \{0 \}$. Then $V \neq \{ 0 \}$ & $n \geq 1$. We can choose non-zero $x..