$\underline{Def}$ Let $\beta=\{u_{1},\cdots,u_{n}\}$ be an ordered basis for an n-dimensional vector space $V$. $\forall x \in V$, let $a_{1},\cdots,a_{n} \in \mathbb{F}$ be the unique scalars such that $\displaystyle x=\sum_{i=1}^{n} a_{i}u_{i}$; then we define the coordinate vector of $x$ by $\beta$ (relative to $\beta$), denoted by $[x]_{\beta}$, as $$\displaystyle [x]_{\beta}=\begin{bmatrix}..