반응형

수학/선형대수학 30

[선형대수학] 선형 변환이 일대일인 것과 동치 명제들

$\underline{Thm}$ Let $V,W$ be finite-dimensional vector space of equal dimension. Let $T \colon V \rightarrow W$ be linear. Then TFAE: $(a)$ $T$ is 1-1. $(b)$ $T$ is onto. $(c)$ $rank(T)=dim(V)$ $\underline{Proof}$ Write $n=dim(V)=dim(W)$. $(a) \Rightarrow (b)$ Since $T$ is 1-1, by thm, $nullity(T)=0$. By Dimension Theorem, $n=dim(V)=nullity(T)+rank(T)=0+rank(T)$,and so $dim(R(T))=n$. Thus, $R(..

[선형대수학] 영공간, 치역, 널리티, 랭크 (Null space, Range, Nullity, Rank)

$\underline{Def}$ Let $V,W$ be vector spaces, and let $T \colon V \rightarrow W$ be linear. We define the null space $N(T)$, the range $R(T)$ of $T$. $$ N(T)=\{ x \in V \colon Tx=0 \} $$ $$ R(T)=\{ Tx \in W \colon x \in V \} $$ Null space and range are called kernel and image respectively. $\underline{Thm}$ Let $V, W$ & $T$ be an in the previous definition. Then $N(T), R(T)$ are subspaces of $V,..

[선형대수학] 선형 독립인 부분집합이 있을 때, 항상 이를 포함하는 극대 선형 독립 부분집합이 있다. (Existence of Maximal Linear Independent Subset) 모든 벡터공간은 기저를 갖는다.

$\underline{Thm}$ (By the axiom of choice) Let $S$ be a linear independent subset of a vector space $V$. Then there exists a maximal linear independent subset $\beta$ of $V$ with $S \subset \beta$. $\underline{Proof}$ Let $\mathcal{F}$ be the set of all linear independent subsets of $V$ containing $S$. Let $\mathcal{C} \subset \mathcal{F}$ be any chain. Define $\displaystyle L_{\mathcal{C}}$ = $..

[선형대수학] 극대 선형 독립 (Maximal Linearly Independent)

$\underline{Def}$ Let $S$ be a subset of a vector space $V$. A subset $B$ of $S$ is a maximal linearly independent subset of $S$ if $(a)$ $B$ is linear independent. $(b)$ if $A$ is a linear independent subset of $S% with $B \subset A$, then $A=B$. $\underline{Rmk}$ We can re-write this definition as follows: Let $\mathcal{F}$ be the set of all linear independent subsets of $S$. A maximal linear ..

[선형대수학] 극대 부분 집합, 체인, 조른의 보조정리, 선택공리 (Maximal Subset, Chain, Zorn's Lemma, Axiom of Choice)

$\underline{Def}$ (극대 부분 집합) Let $\mathcal{F}$ be a set of sets. A set $M \in \mathcal{F}$ is called maximal if $ \nexists K \in \mathcal{F}$ such that $M \subsetneq K$; that is, $A \in \mathcal{F}$ & $M \subset A \Rightarrow A=M$. $\underline{Def}$ A set $\mathcal{C}$ of sets is called chain if $\forall A, B \in \mathcal{C},\; A \subset B$ or $B \subset A$. $\underline{Maximal\;Principle}$ (Zor..

반응형