$\underline{Thm}$
$A \in M_{m \times n},\, B \in M_{n \times p}$
Let $$AB=\begin{bmatrix} u_{1} & u_{2} & \cdots & u_{p} \end{bmatrix},\, B=\begin{bmatrix} v_{1} & v_{2} & \cdots & v_{p} \end{bmatrix}$$
Then
$$u_{j}=Av_{j}, v_{j}=Be_{j}\;\;\;(B=BI_{p})$$
$\underline{Thm}$
Let $V,W$ be finite dimensional vector spaces with ordered bases $\beta, \gamma$ respectively. Let $T$ be linear. Then
$$[T(u)]_{\gamma}=[T]_{\beta}^{\gamma}[u]_{\beta}\;\;\; \forall u \in V$$
$\underline{Proof}$
Let $\beta = \{ v_{1}, \cdots, v_{n} \},\, \gamma=\{ w_{1}, \cdots, w_{m} \}.$
Let $[u]_{\beta}=\begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix}$; that is, $u=a_{1}v_{1}+\cdots+a_{n}v_{n}.$
$[T]_{\beta}^{\gamma}=(b_{ij})_{m \times n}$; that is, $\displaystyle T(v_{j})=\sum_{i=1}^{n} b_{ij}w_{i}\;\;(1 \leq j \leq n).$
Then
$$\displaystyle \begin{equation} \begin{split} T(u) & =T(\sum_{j=1}^{n} a_{j}v_{j}) \\ & =\sum_{j=1}^{n}a_{j} \sum_{i=1}^{m}b_{ij}w_{i} \\ & = \sum_{i=1}^{m}(\sum_{j=1}^{n} b_{ij}a_{j}) w_{i} \end{split} \end{equation}$$
Hence,
$$\displaystyle \begin{equation} \begin{split} [T(u)]_{\gamma} & = \begin{bmatrix} \sum_{j=1}^{n} b_{1j}a_{j} \\ \vdots \\ \sum_{j=1}^{n} b_{mj}a_{j} \end{bmatrix} \\ & = (b_{ij})_{m \times n} \begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix} \\ & = [T]_{\beta}^{\gamma}[u]_{\beta} \end{split} \end{equation}$$
$\underline{Ex}$
Let $T \colon P_{3}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be the linear map given by $T(f(x))=f^{'}(x)$.
$\beta = \{ 1,x,x^{2}x^{3} \},\, \gamma=\{1,x,x^{2} \}.$
Note
$$[T]_{\beta}^{\gamma}=\begin{bmatrix} 0 &1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$
Let $P(x)=2-4x+x^{2}+3x^{3}$; then
$$[P(x)]_{\beta}=\begin{bmatrix} 2 \\ -4 \\ 1 \\ 3 \end{bmatrix},\, T(P(x))= -4+2x+9x^{2}$$
so, $[T(P(x))]_{\gamma}=\begin{bmatrix} -4 \\ 2 \\ 9 \end{bmatrix}$.
On the other hand,
$$\begin{equation} \begin{split} [T]_{\beta}^{\gamma}[P(x)]_{\beta} & = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ -4 \\ 1 \\ 3 \end{bmatrix} \\ & = \begin{bmatrix} -4 \\ 2 \\ 0 \end{bmatrix} \end{split} \end{equation}$$
'수학 > 선형대수학' 카테고리의 다른 글
[선형대수학] 가역성, 가역행렬 (Invertibility, Inverse Matrix) (0) | 2020.08.28 |
---|---|
[선형대수학] Left Product Map (0) | 2020.08.27 |
[선형대수학] 행렬의 거듭제곱 (Power of Matrix) (0) | 2020.08.26 |
[선형대수학] 행렬 연산의 성질 (Properties of Matrix Operation) (0) | 2020.08.26 |
[선형대수학] 선형 사상의 합성과 행렬 곱셈 (Compostion of Linear Maps & Matrix Multiplication) (0) | 2020.08.25 |