$\underline{Def}$
Let $S$ be a subset of a vector space $V$.
A subset $B$ of $S$ is a maximal linearly independent subset of $S$ if
$(a)$ $B$ is linear independent.
$(b)$ if $A$ is a linear independent subset of $S% with $B \subset A$, then $A=B$.
$\underline{Rmk}$
We can re-write this definition as follows:
Let $\mathcal{F}$ be the set of all linear independent subsets of $S$.
A maximal linear independent subset of $S$ is a maximal set $B$ in $\mathcal{F}$.
$\underline{Rmk}$
Let $\beta$ be a basis for a vector space $V$.
Then $\beta$ is a maximal linear independent subset of $V$.
$\underline{Proof}$
By definition, $\beta$ is a linear independent subset of $V$.
Let $\alpha$ e any linear independent subset of $V$ with $\beta \subset \alpha$.
If $\exists v \in \alpha \backslash \beta$, then since $v \in V = span(\beta)$, $\beta \cup \{v \}$ is linear dependent by thm, a contradiction to the fact that $\alpha$ is linear independent.
Thus, $\alpha = \beta$.
$\underline{Thm}$
Let $S$ be a subset of a vector space $V$ with $span(S)=V$.
If $\beta$ is a maximal linear independent subset of $S$, then $\beta$ is a basis for $V$.
$\underline{Proof}$
It is sufficient to show that $S \subset span(\beta)$.
Suppose $\exists v \in S \backslash span(\beta)$. Then by thm, $\beta \cup \{ v \}$ is a linear independent subset of $S$ that properly contains $\beta$, a contradiction to maximality of $\beta$.
$\underline{Rmk}$
By the above, for a subet $\beta$ of a vector space $V$,
$\beta$ is a basis for a $V$ $\Leftrightarrow$ it is a maximal linear independent subset of $V$.
'수학 > 선형대수학' 카테고리의 다른 글
[선형대수학] 선형 변환 (Linear Transformation) (0) | 2020.08.19 |
---|---|
[선형대수학] 선형 독립인 부분집합이 있을 때, 항상 이를 포함하는 극대 선형 독립 부분집합이 있다. (Existence of Maximal Linear Independent Subset) 모든 벡터공간은 기저를 갖는다. (0) | 2020.08.19 |
[선형대수학] 극대 부분 집합, 체인, 조른의 보조정리, 선택공리 (Maximal Subset, Chain, Zorn's Lemma, Axiom of Choice) (0) | 2020.08.19 |
[선형대수학] 부분공간의 차원 (Dimension of Subspace) (0) | 2020.08.18 |
[선형대수학] 차원 (Dimension) (0) | 2020.08.18 |