Processing math: 100%

수학/선형대수학

[선형대수학] 선형 사상의 합성과 행렬 곱셈 (Compostion of Linear Maps & Matrix Multiplication)

xeskin 2020. 8. 25. 15:54
반응형

Thm_

Let V,W,Z be vector spaces over F, and let T:VW & U:WZ be linear. Then UT=UT:VZ is linear.

 

Thm_

Let V be a vector space. Let T,U1,U2L(V)=L(V,V). Then

(a) T(U1+U2)=TU1+TU2,(U1+U2)T=U1T+U2T

(b) T(U1U2)=(TU1)U2

(c) IT=TI=T (I:V is the identity map)

(c) a(U1U2)=(aU1)U2=U1(aU2)aF

(Caution, U1U2U2U1 in general.)

 

CompostionvsMatrixProduct_

Let T:VW,U:WZ be linear. where α={v1,,vp},β={w1,,wn},γ={z1,,zm} are ordered basis for V,W,Z, respectively.

Let A=(aik)m×n=[U]γβ,B=(bkj)n×p=[T]βα,C=(cij)m×p=[UT]γα.

Then

T(vj)=nk=1bkjwk(1jp)

U(wk)=mi=1aikzi(1kn)

(UT)(vj)=mi=1cijzi(1jp)

On the other hand,

(UT)(vj)=U(T(vj))=U(nk=1bkjwk)=nk=1bkjmi=1aikzi=mi=1(nk=1aikbkj)zi

Thus,

cij=nk=1aikbkj(1im,1jp).

 

Def_

Let AMm×n(F),BMn×p(F).

The product AB of A & B is defined to be the matrix ABMm×p(F) given by

(AB)ij=nk=1AikBkj(1im,1jp).

 

With this definition, we have proved the following above.

 

Thm_

Let V,W,Z be finite dimensional vector spaces with ordered bases α,β,γ, respectively.

Let T:VW,U:WZ be linear.

Then [UT]γα=[U]γβ[T]βα.

 

Prop_

Let AMm×n=Mm×n(F),BMn×p.

Then (AB)t=BtAt

 

Proof_

(AB)tij=(AB)ij=nk=1AjkBki=nk=1(Bt)ik(At)ki=(BtAt)ijfor1ip,1jm

 

반응형