$\underline{Thm}$
Let $V,W,Z$ be vector spaces over $\mathbb{F}$, and let $T \colon V \rightarrow W$ & $U \colon W \rightarrow Z$ be linear. Then $UT=U \circ T \colon V \rightarrow Z$ is linear.
$\underline{Thm}$
Let $V$ be a vector space. Let $T, U_{1}, U_{2} \in \mathcal{L}(V)=\mathcal{L}(V,V)$. Then
$(a)$ $T(U_{1}+U_{2})=TU_{1}+TU_{2}, (U_{1}+U_{2})T=U_{1}T+U_{2}T$
$(b)$ $T(U_{1}U_{2})=(TU_{1})U_{2}$
$(c)$ $IT=TI=T$ $(I \colon V \rightarrow$ is the identity map)
$(c)$ $a(U_{1}U_{2})=(aU_{1})U_{2}=U_{1}(aU_{2})\, \forall a \in \mathbb{F}$
(Caution, $U_{1}U_{2} \neq U_{2}U_{1}$ in general.)
$\underline{Compostion\,vs\,Matrix\,Product}$
Let $T \colon V \rightarrow W, U \colon W \rightarrow Z$ be linear. where $\alpha=\{v_{1},\cdots,v_{p} \}, \beta=\{w_{1},\cdots,w_{n} \}, \gamma=\{ z_{1},\cdots,z_{m} \}$ are ordered basis for $V,W,Z$, respectively.
Let $A=(a_{ik})_{m \times n}=[U]_{\beta}^{\gamma}, B=(b_{kj})_{n \times p}=[T]_{\alpha}^{\beta}, C=(c_{ij})_{m \times p}=[UT]_{\alpha}^{\gamma}$.
Then
$$\displaystyle T(v_{j})=\sum_{k=1}^{n} b_{kj}w_{k} \; (1 \leq j \leq p)$$
$$\displaystyle U(w_{k})=\sum_{i=1}^{m} a_{ik}z_{i} \; (1 \leq k \leq n)$$
$$\displaystyle (UT)(v_{j})=\sum_{i=1}^{m} c_{ij}z_{i} \; (1 \leq j \leq p)$$
On the other hand,
$$\displaystyle \begin{equation} \begin{split} (UT)(v_{j}) & = U(T(v_{j})) \\ & = U(\sum_{k=1}^{n} b_{kj}w_{k}) \\ & = \sum_{k=1}^{n} b_{kj} \sum_{i=1}^{m} a_{ik}z_{i} \\ & = \sum_{i=1}^{m} (\sum_{k=1}^{n} a_{ik}b_{kj})z_{i} \end{split}\end{equation}$$
Thus,
$$\displaystyle c_{ij}=\sum_{k=1}^{n} a_{ik}b_{kj} \; (1 \leq i \leq m, 1 \leq j \leq p)$$.
$\underline{Def}$
Let $A \in M_{m \times n}(\mathbb{F}), B \in M_{n \times p}(\mathbb{F})$.
The product $AB$ of $A$ & $B$ is defined to be the matrix $AB \in M_{m \times p}(\mathbb{F})$ given by
$$\displaystyle (AB)_{ij}=\sum_{k=1}^{n} A_{ik}B_{kj} \; (1 \leq i \leq m, 1 \leq j \leq p).$$
With this definition, we have proved the following above.
$\underline{Thm}$
Let $V,W,Z$ be finite dimensional vector spaces with ordered bases $\alpha, \beta, \gamma$, respectively.
Let $T \colon V \rightarrow W,\, U \colon W \rightarrow Z$ be linear.
Then $[UT]_{\alpha}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}$.
$\underline{Prop}$
Let $A \in M_{m \times n}=M_{m \times n}(\mathbb{F}),\, B \in M_{n \times p}$.
Then $(AB)^{t}=B^{t}A^{t}$
$\underline{Proof}$
$$\displaystyle \begin{equation} \begin{split} (AB)_{ij}^{t} & = (AB)_{ij} \\ & = \sum_{k=1}^{n} A_{jk}B_{ki} \\ & = \sum_{k=1}^{n} (B_{t})_{ik}(A^{t})_{ki} \\ & = (B^{t}A^{t})_{ij}\;\;\; for\,\; 1 \leq i \leq p,\, 1 \leq j \leq m \end{split} \end{equation}$$
'수학 > 선형대수학' 카테고리의 다른 글
[선형대수학] 행렬의 거듭제곱 (Power of Matrix) (0) | 2020.08.26 |
---|---|
[선형대수학] 행렬 연산의 성질 (Properties of Matrix Operation) (0) | 2020.08.26 |
[선형대수학] 선형 사상을 모은 집합과 행렬을 모은 집합 간에는 선형 사상이 존재한다. (Existence of Linear Map Between Set of Linear Maps and Set of Matrices) (0) | 2020.08.24 |
[선형대수학] 벡터 공간 간의 사상을 모은 집합은 벡터 공간이 된다. (0) | 2020.08.24 |
[선형대수학] 선형 변환의 행렬 표현 (Matrix Representation of a Linear Transform) (0) | 2020.08.21 |