$\underline{Lemma}$
Let $T \colon V \rightarrow W$ be linear & invertible.
Then $dim(V) < \infty \Leftrightarrow dim(W) < \infty.$
In this case, $dim(V)=dim(W).$
$\underline{Proof}$
$(\Rightarrow)$
Let $\beta= \{ x_{1}, \cdots, x_{n} \}$ be a basis for $V$.
By thm, $T(\beta)$ spans $R(T)=W$. By thm, $dim(W) < \infty$.
$(\Leftarrow)$
Since $T^{-1} \colon W \rightarrow V$ is linear & invertible, if $dim(W) < \infty$, by the same argument $dim(V) < \infty$.
Next, suppose $dim(V) < \infty$ (and so $dim(W) < \infty$) Since $T$ is 1-1 & onto, $nullity(T)=0$ & $rank(T)=dim(W)$. By Dimenstion Thm, $dim(V)=dim(W)$.
$\underline{Thm}$
Let $V,W$ be finite dimensional vector spaces with ordered basis $\beta, \gamma$, respectively. Let $T \colon V \rightarrow W$ be linear. Then
$$T\,is\,invertible \Leftrightarrow [T]_{\beta}^{\gamma} \, is \, invertible.$$
In this case, $([T]_{\beta}^{\gamma})^{-1}=[T^{-1}]_{\gamma}^{\beta}$.
$\underline{Proof}$
$(\Rightarrow)$
Suppose $T$ is invertible. By the above lemma, $dim(V)=dim(W)=n$. So, $[T]_{\beta}^{\gamma} \in M_{n \times n}$.
Since $TT^{-1}=I_{W}$ & $T^{-1}T=I_{V}$, we have
$$I_{n}=[I_{W}]_{\gamma}=[TT^{-1}]_{\gamma}=[T]_{\beta}^{\gamma}[T^{-1}]_{\gamma}^{\beta},$$
$$I_{n}=[I_{V}]_{\beta}=[T^{-1}T]_{\beta}=[T^{-1}]_{\beta}^{\gamma}[T]_{\beta}^{\gamma}.$$
Thus, $[T]_{\beta}^{\gamma}$ is invertible & $([T]_{\beta}^{\gamma})^{-1}=[T^{-1}]_{\gamma}^{\beta}$.
$(\Leftarrow)$
Suppose $[T]_{\beta}^{\gamma}=A$ is invertible. Then $\exists B \in M_{n \times n}$ s.t. $$AB=BA=I_{n}$$
Write $\beta=\{v_{1},\cdots,v_{n} \},\, \gamma=\{w_{1},\cdots,w_{n} \}$.
Then $\exists ! U \in \mathcal{L}(W,V)$ s.t. $$\displaystyle U(w_{j})=\sum_{i=1}^{n} B_{ij}v_{i} \;\; for \; 1 \leq j \leq n$$
So, $[U]_{\gamma}^{\beta}=B$. Note $$[UT]_{\beta}=[U]_{\gamma}^{\beta}[T]_{\beta}^{\gamma}=BA=I_{n}=[I_{V}]_{\beta}$$
Thus, $UT=I_{V}$. Similarlym we get $TU=I_{W}$.
$\underline{Coro.1}$
Let $V$ be a finite-dimensional vector space with an ordered basis $\beta$, and let $T \colon V \rightarrow V$ be linear. Then
$$T\, is\, invertible \Leftrightarrow [T]_{\beta} \, is \, invertible.$$
In this case, $([T]_{\beta})^{-1}=[T^{-1}]_{\beta}.$
$\underline{Coro.2}$
Let $A \in M_{n \times n}$. Then $$L_{A}\, is\, invertible \Leftrightarrow A \, is \, invertible.$$
where $A=[L_{A}]_{\beta}$ ($\beta$ is standard ordered basis for $\mathbb{F}^{n})
In this case, $$[L_{A^{-1}}]_{\beta}=A^{-1}=([L_{A}]_{\beta})^{-1}=[L_{A}^{-1}]_{\beta},$$
and so $L_{A}^{-1}=L_{A^{-1}}$.
'수학 > 선형대수학' 카테고리의 다른 글
[선형대수학] 가역성, 가역행렬 (Invertibility, Inverse Matrix) (0) | 2020.08.28 |
---|---|
[선형대수학] Left Product Map (0) | 2020.08.27 |
[선형대수학] 선형 사상의 값에 대응되는 행렬 표현 (Matrix Representation Corresponding to The Value of Linear Map) (0) | 2020.08.27 |
[선형대수학] 행렬의 거듭제곱 (Power of Matrix) (0) | 2020.08.26 |
[선형대수학] 행렬 연산의 성질 (Properties of Matrix Operation) (0) | 2020.08.26 |